
Sample Traces

Tim
er.
sta
rt(
)

Tim
er.
!re

d()

Tim
er.
sta
rt(
)

Tim
er.
!re

d()

Valid Trace

Tim
er.
sto
p()

Invalid Trace

Generalized Specification Idiom

∀t ∈ N (
[∃i : t < i : (fτ [i].t =self) ∧ (fτ [i].m =cancelSPOp)∧
¬∃j : t < j < i : (fτ [j ].s =self) ∧ (fτ [j ].m =SPOpDone)∧
∃k : i < k : (fτ [k ].s =self) ∧ (fτ [k ].m =SPOpDone)]
=⇒
∃l : i < l < k : (fτ [l].t =self) ∧ (fτ [l].m =SPOpStart)

∨
[∃i : t < i : (fτ [i].s =self) ∧ (fτ [i].m =SPOpDone)∧
¬∃j : j < i : (fτ [j ].s =self) ∧ [(fτ [j ].m =SPOpDone)∧
∃k : i < k : (fτ [k ].s =self) ∧ (fτ [k ].m =SPOpDone)]
=⇒
∃l : i < l < k : (fτ [l].t =self) ∧ (fτ [l].m =SPOpStart))

Specifying Timer: Attempt 2 — Trace Invariant

∀t ∈ N (
[∃i : t < i : (fτ [i].t =self) ∧ (fτ [i].m =stop)∧
¬∃j : t < j < i : (fτ [j ].s =self) ∧ (fτ [j ].m =fired)∧
∃k : i < k : (fτ [k ].s =self) ∧ (fτ [k ].m =fired)]
=⇒
∃l : i < l < k : (fτ [l].t =self) ∧ (fτ [l].m =start)

∨
[∃i : t < i : (fτ [i].s =self) ∧ (fτ [i].m =fired)∧
¬∃j : j < i : (fτ [j ].s =self) ∧ [(fτ [j ].m =fired)∧
∃k : i < k : (fτ [k ].s =self) ∧ (fτ [k ].m =fired)]
=⇒
∃l : i < l < k : (fτ [l].t =self) ∧ (fτ [l].m =start))

Specifying Timer: Attempt 1

command void start(uint32_t delay);
requires: !self.active
ensures: self.active ∧ self.period = delay ∧
(∃i :tc< i :
¬∃j :tc< j < i : (fτ [j ].t =self) ∧ (fτ [j ].m =stop)

=⇒ (fτ [i].s =self) ∧ (fτ [i].m =fired))

command void stop();
requires: self.active
ensures: !self.active ∧ self.period = 0 ∧
(∃i :tc< i : (fτ [i].s =self) ∧ (fτ [i].m =fired)

=⇒ ∃j :tc< j < i : (fτ [j ].t =self) ∧ (fτ [j ].m =start))

Problem: Method specs no longer independent!

The Specification Approach

Requirement
We need to establish the relation between the initialization and completion
of split-phase operations.
Key Specification Mechanism — fτ
The future trace of a system is the sequence of method invocations that must
occur after a given execution point.

Example: Timer

interface Timer {
modeled by: (active:boolean, period:nat number)
initial state: (false, 0)

command void start(uint32_t delay);
command void stop();
command bool is_active();
event void fired();

}

Key Points

•A component using this interface can start() a timer, with the expectation
that when delay time units have elapsed, the fired() event will be signaled
•Specification needs to capture relation between start() and fired()

nesC Interfaces
•Bi-directional; commands flow into the component, and events flow out

of the component
•Non-blocking operations implemented in a split-phase manner

TinyOS
•Operating system designed to support sensor network development
•Component library provides access to low-level hardware entities
•Execution driven by interrupts and a lightweight task scheduler

Problem Context

•Reactive systems are hard to specify without temporal properties
– Systems are driven by external stimuli from the environment
– Some systems are inherently reactive: e.g., wireless sensor networks
•Temporal properties are hard to capture in a call/return programming

model
– e.g., Split-phase operations: Call & return realized as separate func-

tions

Abstract

Interrupt- and event-driven applications constitute an important system
class, with connections to desktop computing, embedded systems, and sen-
sor networks. We refer to this set of applications collectively as reactive
systems. In this paper, we present a specification idiom for documenting re-
active system behavior. Specifically, we discuss an approach to document-
ing split-phase operations — operations that involve a request, followed by
a deferred out-of-context callback. We derive the idiom by example using
interfaces from the TinyOS library, a popular component library for sensor
network applications. We conclude with a broader discussion of specifica-
tion idioms for reactive systems.

This work is supported by NSF CAREER grants
CNS-0746632 and CNS-0745846.

31st International Conference on Software Engineering, New Ideas and Early Results Track

Nigamanth Sridhar1 and Jason O. Hallstrom2
1: Electrical and Computer Engineering, Cleveland State University
2: School of Computing, Clemson University

A Specification Idiom for Reactive Systems


